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Exact enumeration of self-avoiding walks on lattices with random site energies
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The self-avoiding random walk on lattices with quenched random site energies is studied using exact
enumeration in d =2 and 3. For each configuration we compute the size R and energy E of the
minimum-energy self-avoiding walk (SAW). Configuration averages yield the exponents v and x, defined
by RZ~N?" and 8E?~ N?. These calculations indicate that v is significantly larger than its value in the
pure system. Finite-temperature studies support the notion that the system is controlled by a zero-
temperature fixed point. Consequently, exponents obtained from minimum-energy SAW’s characterize
the properties of finite temperature SAW’s on disordered lattices.

PACS number(s): 64.60.Ak, 36.20.Ey

I. INTRODUCTION

In recent years, there has been considerable interest in
the problem of self-avoiding random walks (SAW’s) in
quenched random environments [1-18]. These studies
are motivated in part by questions concerning the behav-
ior of polymers in porous media and in part by the
broader aim of elucidating the effect of quenched disorder
on critical phenomena. The SAW in a random environ-
ment is closely related to other quenched-disorder prob-
lems such as spin glasses, random interfaces, and directed
walks in random environments. The basic question is
how the behavior of the SAW is modified by disorder. A
decade of theoretical and numerical studies has led to
contradictory answers to this question.

Significant progress was made in the past several years
with the hypothesis that the asymptotic properties of the
SAW in a quenched random environment are governed
by a zero-temperature (strong disorder) fixed point
[10—-12]. If the finite-temperature problem is controlled
by a zero-temperature fixed point, then the critical ex-
ponents for finite temperature may be extracted by
averaging over minimum-energy SAW’s in an ensemble
of environments. In the present study exact enumeration
methods are employed to investigate the zero-tem-
perature properties of the SAW in a random environ-
ment, and to provide evidence that the finite-temperature
properties are controlled by a zero-temperature fixed
point.

We consider N-step SAW’s starting at the origin on the
square and simple-cubic lattices. Each lattice site is as-
signed a random energy &, taken from some distribution
p(&). The two energy distributions studied here are the
Gaussian with mean zero and variance 1 and the uniform
distribution on the interval O to 1. The energy E of a
SAW is the sum of the energies of the visited sites, and
the statistical weight of the SAW is given by the
Boltzmann factor, exp(—E /T), at temperature 7. In the
limit of zero temperature (equivalently strong disorder),
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the ensemble of SAW’s for each environment is dominat-
ed by the minimum-energy SAW. Because it is much fas-
ter to find the minimum-energy SAW than to sum over
all SAW’s, most of our efforts are devoted to the zero-
temperature problem.

We find the exact minimum-energy configuration for a
large number of environments and compute statistics for
the end-to-end distance R and energy E of these SAW’s.
This yields the exponents v and Y characterizing the size
and energy fluctuations of the SAW, defined by

RI~N% (1a)

and

SEZ~N?X | (1b)

where the overbar indicates an average over environ-
ments. We also study the end-to-end distance at finite
temperature by exact enumeration of SAW’s weighted by
the Boltzmann factor.

Our results show conclusively that the size exponent
for the SAW in a random environment in two and three
dimensions is larger than the corresponding size ex-
ponent for the pure SAW. In order to provide a frame-
work for understanding this conclusion, we review two
arguments [12] explaining why the SAW is expanded by
quenched disorder. The first argument is of the “Flory”
type and is based on the idea that the SAW expands to
seek out favorable sites. In a mean-field approximation
the fluctuations in site energies available to the SAW in-
crease as the square root of the explored volume. With
this in mind one constructs a free energy in which a dis-
order term of the form —N /R “/? is added to the free en-
ergy of pure SAW’s, which is —(R /Nv"“'e)l/“_v"‘"e).
Minimizing the free energy leads to Flory exponents [12],

_ 1
C1Hd (1= vy,) /2

VF( d) (2a)
and
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Xpld)=2(2—dvy,,) . (2b)

(YRS

Thus  vp(2)=4%, wvp(3) =0.616, xg(2)=1, and
Xr(3)=0.073. These values are compared to our numeri-
cal results in Tables I and II.

The second argument (also see Ref. [4]) focuses on the
probability, with respect to the distribution of environ-
ments, that a given SAW is a minimum-energy SAW. It
is not difficult to see (e.g., work out the probabilities for
two-step SAW’s) that a SAW having fewer intersections
with all other SAW’s has a greater probability of being a
minimum-energy SAW. Since SAW’s with large end-to-
end distances have fewer intersections with other SAW’s,
they are more likely to be minimum-energy SAW’s. This
argument shows that the average size of the SAW is in-
creased by quenched disorder, but it does not imply that
the size exponent is actually changed.

The present investigation differs from most previous
numerical studies in two important ways. The first
difference is that we consider continuous disorder rather
than percolation disorder (site dilution). Above the per-
colation threshold, percolation disorder and continuous
disorder are believed to be in the same universality class
[12]. However, there are several advantages in using con-
tinuous distributions. First, the averaging procedure is
not uniquely defined for percolation disorder. For exam-
ple, one can average over all environments that support
at least one N-step SAW from the origin, or one can aver-
age only over environments for which the origin is part of
the infinite cluster [7,9,13]. Second, there is no zero-
temperature limit for percolation disorder since all al-
lowed SAW’s have the same energy. Starting from per-
colation disorder, the zero-temperature fixed point is ap-
proached only at large length scales [10]. Thus we be-
lieve that one must go to relatively large N for percola-
tion disorder to obtain good estimates of the asymptotic
exponents. By working directly at zero temperature with
continuous disorder, we are able to obtain accurate esti-
mates of asymptotic critical exponents from the relatively
short SAW’s accessible via exact enumeration.

The second important feature that distinguishes the
present study from most previous numerical investiga-
tions is that we employ exact enumeration rather than
Monte Carlo or incomplete enumeration methods. Previ-
ous Monte Carlo studies [1,14] and our own preliminary
investigations found little or no deviation from pure sys-
tem behavior. However, we believe this is a consequence
of the difficulty of using Monte Carlo methods in a sys-
tem governed by a strong-disorder fixed point. In this sit-
uation, the ensemble for large N is dominated by a small
fraction of SAW’s that have energy close to the minimum
[10-12]. The small sample of SAW’s produced by Monte
Carlo or incomplete enumeration may entirely miss the
regions of configuration space that dominate the ensem-
ble of all SAW’s. The fact that finding the minimum-
energy SAW is an NP-complete problem [15] casts fur-
ther doubt on whether Monte Carlo or incomplete
enumeration can be successfully used to study the equilib-
rium statistical mechanics of SAW’s in quenched random
environments. Exact enumeration avoids this pitfall, but
is limited to relatively short SAW’s.

At least some of the disagreements between previous
studies are due to differences in averaging procedures.
When the randomness in the lattice is static, one must
distinguish between two situations. If one or both ends of
the SAW is (are) fixed, there is true quenched disorder.
On the other hand, if both ends of the chain are free, the
statistics of the SAW is the same as for annealed disor-
der. This is because the SAW explores many independent
environments as it moves around the lattice. Harris [3]
showed that disorder is irrelevant for this “annealed”
problem, where the chain is free to explore an infinite
static lattice. In the present paper we are concerned ex-
clusively with the quenched problem.

Several recent numerical studies of SAW’s with
quenched percolation disorder have been carried out and
suggest that exponents differ from those for the pure
SAW. Lam [16] studied SAW’s on two-dimensional per-
colation clusters at p, using incomplete [17] enumeration
and found v=0.81. Vanderzande and Komoda [18] used
exact enumeration to investigate two and three dimen-
sions both at p, and for p >p_. for SAW’s up to N =30.
In the d =2 case they found no significant change from
the pure SAW result, but in three dimensions, for p >p,,
they reported an increase in the size exponent, v=0.64
compared to v, =0.59. Grassberger [13] used a recur-
sive incomplete enumeration method for d =2 and found
v=0.78 at p.,. For p <p. he found v=0.81 averaging
over large clusters, while for p > p, there was significant
upward curvature in log-log plots of R versus N out to
N =100.

Several authors [8,10,12] have pointed out that the
SAW in a random environment has much in common
with the directed self-avoiding walk (DSAW) in a random
environment [19,20]. Both systems are controlled by a
strong-disorder fixed point, and both the SAW and
DSAW are expanded by quenched disorder. The SAW
problem is, however, more complicated than the DSAW
problem in several respects. There is an exact solution
for the DSAW exponents in 1+ 1 dimensions [19] and an
exact identity, Yy =2v—1, which holds in all dimensions.
In contrast, no exact results or controlled approximations
are known at present for the exponents of the SAW in a
quenched random environment in two and three dimen-
sions. From a computational standpoint, finding mini-
mum-energy SAW’s is a more difficult problem than
finding minimum-energy DSAW’s, because the former
problem is NP-complete [15], while the latter enjoys a po-
lynomial time algorithm [19,20].

II. METHODS

We use an exact enumeration scheme based on the
“backtracking” algorithm [21]. At each step after the
first, the walker has Z —1 choices of direction, with Z
the coordination number. An order is imposed among
these available directions and the first of the possible
steps is attempted. If this leads to a self-intersection, the
next possible step is attempted. In this way, the first
SAW is grown to the desired length N. When the max-
imum number of steps has been reached, or when the
Z —1 choices of directions are rejected, the walker re-
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treats a step and tries the next available step from that
site. In this way, the algorithm sweeps through the tree
of all possible SAW’s in a prescribed order.

There are two ways the program can be speeded up to
find the minimum-energy SAW. First, the tree of all
SAW’s can be “pruned” by abandoning all partially
grown M-step SAW’s (M <N) whose energy E[M]
exceeds the current minimum N-step energy, E_;.[N].
This device is useful only when the site energies are posi-
tive (e.g., for the uniform distribution), since, otherwise,
additional steps in the SAW may lower the total energy.
Second, the sequence in which steps are attempted from a
given site is chosen according to the energy of the step
rather than in a fixed order.

Using this method, we obtained exact minimum-energy
SAW’s up to N =20 steps for order 10° environments.
Longer minimum-energy SAW’s can be readily found for
the uniform distribution; for example, on a DECstation
5000/200 (24 MIPS) it takes about 15 min to find a single
minimum-energy SAW for 35 steps in two dimensions,
and 25 min for 35 steps in three dimensions. However,
we chose to study shorter SAW’s in order to obtain
high-quality statistics. For the Gaussian energy distribu-
tion some site energies are negative, so the pruning
method does not work and all SAW’s must be enumerat-
ed, which significantly increases the running time. Simi-
larly, at positive temperatures it is necessary to
enumerate all SAW’s.

It should be noted that there can be a degeneracy
among minimum-energy SAW’s since the same set of
sites could be visited in a different order by two distinct
SAW’s. These SAW’s will have different end-to-end dis-
tances but the same radius of gyration. We also collected
statistics for the radius of gyration and found no
significant differences in estimates of the size exponent.

III. RESULTS

Figure 1 shows the disorder-averaged end-to-end dis-
tance of the minimum-energy SAW on a two-dimensional
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FIG. 1. Double-logarithmic plot of the average squared end-
to-end distance for minimum-energy SAW’s on a square lattice
with a uniform distribution of site energies, compared with the
average squared end-to-end distance for a pure SAW on the
same lattice (Ref. [22]).
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FIG. 2. Size exponent vy [see Eq. (3)] for the minimum-
energy SAW in d =2 with the uniform and the Gaussian site-
energy distributions, compared with the pure SAW.

square lattice with a uniform distribution of site energies.
Each data point represents an average of approximately
200000 configurations. For comparison, the average
end-to-end distance for the pure SAW on the same lattice
is shown [22]. Figure 1 shows that quenched disorder
stretches the SAW and suggests that the size exponent is
also increased by disorder. In order to obtain a clearer
picture of the value of the size exponent, we define an N-
dependent size exponent by the slopes of successive pairs
of data points on a double-logarithmic plot, viz.,

) :iln(R_f;/RNz_z)
N 2 In(N/N—=2) "~

where N is the number of bonds in the SAW. In Fig. 2,
vy is plotted versus 1/N for d =2. The uniform and
Gaussian distributions are shown along with the pure
SAW. Our estimates of the asymptotic value of the size
exponents and the associated subjective uncertainty are
obtained by visually extrapolating 1/N —0 and are listed
in Table I. The data points for Gaussian disorder con-
sistently lie above the data for the uniform distribution,
but have a smaller slope. This is consistent with the hy-
pothesis that the Gaussian distribution is closer to the
fixed distribution than the uniform distribution, so the
asymptotic region is reached sooner. In Ref. [12] it was
shown that the fixed distribution on hierarchical lattices
is qualitatively quite similar to a Gaussian. The close
correspondence between the Gaussian and uniform distri-
bution suggests that a single zero-temperature fixed point
controls both cases.

Figure 3 shows the size exponent versus 1/N for the

(3)

TABLE 1. Estimates of the exponents v and y for uniform
and Gaussian disorder for d =2 compared with values for the
pure system (Ref. [22]) and a Flory approximation (Ref. [12]).

d=2 Pure Uniform Gaussian Flory
v 0.75 0.80+0.02 0.81+0.02 0.8
X 0.28+0.03 0.28+0.02 0.2




47 EXACT ENUMERATION OF SELF-AVOIDING WALKSON . .. 265

0.72

0.70 r

oo | s .

0.66

N

a disorder

0.64 r O pure
0.62
(o3
0.60 P00 0 O o O e °©
0.58
0.00 0.05 0.10 0.15 0.20 0.25 0.30
1/N

FIG. 3. Size exponent vy vs 1/N in d =3 for the uniform dis-
tribution, compared with the pure SAW.

uniform distribution compared to the corresponding
curve for the pure SAW on a three-dimensional simple-
cubic lattice. 70000 configurations are averaged to ob-
tain these data points. The estimate of the asymptotic
size exponent is given in Table II.

The approach of vy to its asymptote depends on the
definition of N; the number of sites and the number of
bonds are two obvious choices (N, =N, —1). In general,
if N=N,, the curve approaches the asymptotic value
from below; if N =N, from above. The data for R? are
better behaved for the choice N =N,.

Next, we consider the energy and its fluctuations. For
Gaussian distributions with mean zero and standard devi-
ation o the average energy of the minimum-energy SAW
should grow linearly in both the number of steps and in
the standard deviation. For the two-dimensional square
lattice we find E ~ —0.84N, 0.

Figure 4 shows the N-dependent energy-fluctuation ex-
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FIG. 4. Energy-fluctuation exponent Yy vs 1/N in d =2 for
the uniform and Gaussian distributions.

TABLE II. Estimates of the exponents v and y for uniform
and Gaussian disorder for d =3 compared with the values for
the pure system (Ref. [22]) and a Flory approximation (Ref.
[12]).

d=3 Pure Uniform Flory
v 0.592 0.71+0.03 0.62
X 0.15+0.03 0.073

ponent versus 1/N for the square lattice with the uniform
and Gaussian distributions of site energies. Here N =N
is the number of sites visited by the SAW. The N-
dependent energy-fluctuation exponent Yy is defined as in
Eq. (3) with 8E? replacing R?. The data points for the
Gaussian have a smaller slope than the data points for
the uniform distribution, reinforcing the view that the
Gaussian is closer to the zero-temperature fixed distribu-
tion than the uniform distribution. Since the energy of a
SAW directly probes the distribution of site energies, it is
not surprising that differences between the two distribu-
tions in the N-dependent exponents are more evident in
Xy than in vy. Figure 5 shows x versus 1/N for the cu-
bic lattice and the uniform distribution. Our best esti-
mates of the asymptotic energy-fluctuation exponents and
their uncertainties are given in Tables I and II for d =2
and 3, respectively.

The results for positive temperatures in two dimen-
sions are shown in Fig. 6, where vy versus 1/N is plotted
for T=0.5 and 1.0 and compared with the zero-
temperature and pure SAW data. Each positive-
temperature point corresponds to an average over 500 en-
vironments with Gaussian disorder. As expected, the
lower temperature is closer to the zero-temperature limit.
Both positive-temperature curves lie significantly above
the pure SAW curve. This result supports the hypothesis
that the positive-temperature (i.e., weak-disorder) and
zero-temperature (i.e., strong-disorder) problems lie in
the same universality class, which differs from the pure
SAW universality class.
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FIG. 5. Energy-fluctuation exponent yy vs 1/N in d =3 for
the uniform distribution.



266 I. SMAILER, J. MACHTA, AND S. REDNER 47

0.85
o T=0
+ T=0.5
0.82 + * x T=1
¥ o pure
4
O
0.80 | 9P e "o
+ o ° o o
+ + ®
¥ +
x o
fov7r E % ¥
M
x %
. +
0.75 XX x
%ummu s
073 | N @ g o *
o o
0.70 :
0.00 0.05 0.10 0.15 0.20 0.25 0.30
1/N

FIG. 6. Size exponent vy vs 1/N in d =2 for runs performed
at temperatures 7 =0, 0.5, and 1.0 with the Gaussian distribu-
tion.

IV. DISCUSSION

Our results provide strong evidence that the self-
avoiding walk in a random environment at zero tempera-
ture is in a different universality class than the pure self-

avoiding walk in both d =2 and 3. The positive-
temperature results suggest that the weak- and strong-
disorder problems are in the same universality class for
these dimensions. The critical exponent for the size in
d =2 is close to the Flory approximation and to the d =2
percolation-threshold results of Refs. [13] and [16]. For
d =3 we find that the size exponent is considerably larger
than either the Flory prediction or that of Ref. [18]. We
find values of the energy-fluctuation exponent that are
quite small, though larger than the Flory values. We be-
lieve that the values recorded in Tables I and II are the
best measurements to date of these exponents, although it
would be useful to have good statistics for larger SAW’s,
especially for the evaluation of y, which can be expected
to be more sensitive than v to deviations from the fixed-
point distribution.
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